C. elegans gDNA isolation in microcentrifuge tubes

Materials

- Samples: live C. elegans.
- Bead lysis kit: 1.5 mL RED RINO/Eppendorf Lysis Kit or 2 mL tube filled with beads.
- DNA isolation kit: magNEAT Tissue DNA Extraction Kit (Kit ID: 2TDMN-50) from Microzone $^{\mu}$.

Method: Homogenization

- 1. Add 450 μL Lysis Buffer, 20 μL proteinase K, and 10 μL FoamBlocker into each lysis kit tube.
- 2. For each tube, obtain a 500 µL suspension of C. elegans in PBS solution.
- 3. Centrifuge the suspension for 2 minutes at 9,000 x g to pellet the C. elegans. **Note:** Pellet sizes may range from $10 20 \mu L$.
- 4. Remove and discard the supernatant.
- 5. Resuspend the pellet with 50 μ L lysis buffer and then transfer into the lysis kit tube.
- 6. Set the Bullet Blender at speed 12, time 4 minutes and homogenize the samples. If using other homogenizer models, refer to the manufacturer's instructions for appropriate settings.
- 7. Remove the tubes and visually inspect the samples to confirm complete homogenization.

Method: Extraction

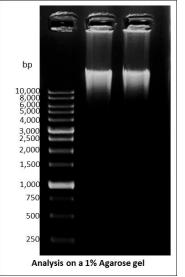
RNase Treatment & Binding:

- 1. Prepare new microtubes containing 200 µL PBS.
- 2. Transfer 320 μ L of the homogenate to the new tubes containing PBS.
- 3. Add 5 μL RNase A to each sample, mix well by inversion and leave at room temperature for 10 minutes, mixing again halfway through the incubation.
- 4. Centrifuge tubes at 13,000 x g for 5 minutes.
- 5. Transfer 450 μ L of supernatant into new microfuge tubes, being careful not to disturb the pellets or transfer any debris. Place the tubes on the tube rack.
- 6. Add 450 μL Binding Buffer to the supernatant in each tube and mix thoroughly by inversion.
- Add 30 μL of magNEAT magnetic beads to each sample tube. Mix thoroughly by inversion until the sample is homogenous. Allow to stand for 5 minutes, mixing again halfway through.
 Note: Vortex magNEAT beads thoroughly before adding to ensure they are resuspended.
- 8. Transfer the tube rack to the magnetic stand and allow to sit for 1-2 minutes, until the magnetic beads are separated.
- 9. Discard the supernatant and remove the tube rack from the magnetic stand.

Washing:

10. Add 700 μ L Wash Buffer 1, mix thoroughly by inversion, ensuring all beads have been detached from the tube walls.

Next Advance, Inc. www.nextadvance.com


Questions? Contact us support@nextadvance.com 1 518 674 3510

C. elegans gDNA isolation in microcentrifuge tubes, continued

- 11. Place the tube rack onto the magnetic stand and allow the magnetic beads to separate.
- 12. Discard the supernatant then remove the tube rack from the magnetic stand. *Note: Be careful not to disturb the magnetic beads.*
- 13. Add 700 µL Wash Buffer 2, mix thoroughly by inversion to completely resuspend the beads.
- 14. Transfer the tube rack to the magnetic stand and allow the magnetic beads to separate.
- 15. Discard the supernatant and remove the tube rack from the magnetic stand. *Note: Be careful not to disturb the magnetic beads.*
- 16. Repeat steps 13-15 for a total of 2 washes with Wash Buffer 2.
- 17. Centrifuge samples at 2,000 x g for 3 minutes.
- 18. Use a 20 μL pipette to remove any remaining wash buffer from the tubes. Do not disturb the magnetic beads.
- 19. Leave caps open to air dry the magnetic beads at room temperature for 5 minutes. *Note: Confirm there is no ethanol present before proceeding to elution steps.*

Elution:

- 20. Add 100 μ L of DNA Elution Buffer to each tube. Mix by tapping to ensure that the magnetic beads are completely resuspended.
- 21. Incubate at 60°C for 5 minutes with caps closed.
- 22. After incubation, place the tubes back on the tube rack and then transfer onto the magnetic stand to allow the beads to separate.
- 23. Transfer the clear supernatant containing the gDNA into new microfuge tubes for downstream processing. Be careful not to disturb the magnetic beads.
- 24. Analyze quality (OD₂₆₀/OD₂₈₀) and yield using NanoDrop and agarose gel (as shown in Figure 1 and Table 1).
- 25. Isolated DNA can be stored at 4°C for up to a week or at -20°C for long term storage.
- Figure 1. In-house data on agarose gel.

Table 1. In-house data using NanoDrop.

Tissue	Yield: µg/10µL Pellet	OD _{260/280}
C. elegans 1	0.120	1.78
C. elegans 2	0.119	1.67

