

Roundworm Homogenization Using the Bullet Blender

RS18-0238C.1CEL

Materials

- [Bullet Blender](#)® for 1.5 mL tubes
- Homogenization Buffer
- [FoamBlocker](#) (Optional)
- [Lysis Kit](#) or [Lysis Beads](#)
 - PINK or RED Lysis Kit
 - 0.5 mm Zirconium Oxide Beads in Eppendorf, GATOR, or RINO tubes
- Sample — up to 300 mg

Table 1. Proper sample, bead and buffer volume ratios for 1.5 mL tubes.

Lysis Kit and Bead Choices	Sample Volume	Bead Volume	Buffer Volume
PINK	Up to 100 mg	Pre-filled	200 - 300 µL
RED	100 - 300 mg	Pre-filled	300 - 600 µL
0.5 mm Zirconium Oxide Beads	Up to 300 mg	100 - 200 µL	200 - 600 µL

Procedure

1. Use the pre-filled bead lysis kit tubes OR prepare a tube with the recommended volume of beads from the table above.
2. Prepare the sample by pelleting the sample in a tube, resuspending it in appropriate amount of lysis buffer and then transfer it into the lysis tubes.
3. (Optional) To avoid excess foaming, add FoamBlocker up to 1-2% of the total volume of the homogenization buffer.
4. Close the tubes tightly and place into the Bullet Blender sample chamber. If using the Gold or Gold⁺ models, pre-cool the chamber before adding sample tubes.
5. Set the controls to speed 10, time 3 minutes then press Start.
Note: Using single-size beads instead of pre-filled lysis kits may require additional time.
6. After the run, remove the tubes from the instrument and visually inspect the samples. If homogenization is incomplete, homogenize for an additional 30 seconds, or repeat the homogenization step with a higher speed.
7. Using a pipette, transfer the homogenized samples into new tubes.
8. Proceed with downstream application.

Notes

This protocol does not specify a particular buffer – choose a buffer that is most appropriate for the downstream application.

The provided homogenization conditions serve as a general guideline. Homogenization times, speeds, or beads may need to be optimized based on sample characteristics and desired outcomes.