Thymus Tissue Homogenizer & Homogenization Protocol

Ideal for Thymus Tissue Homogenization

Do you spend lots of time and effort homogenizing thymus tissue samples? The Bullet Blender® tissue homogenizer delivers high quality and superior. No other homogenizer comes close to delivering the Bullet Blender’s winning combination of top-quality performance and budget-friendly affordability.

The Bullet Blender® Homogenizer
Save Time, Effort and Get Superior Results

  • Consistent and High Yield Results
    Run up to 24 samples at the same time under microprocessor-controlled conditions, ensuring experimental reproducibility and high yield. Process samples from 10mg or less up to 3.5g.
  • No Cross Contamination
    No part of the Bullet Blender® ever touches the thymus tissue samples – the sample tubes are kept closed during homogenization. There are no probes to clean between samples.
  • Samples Stay Cool
    Homogenizing causes only a few degrees of heating. Our Gold models keep samples at 4°C.
  • Easy and Convenient to Use
    Just place beads and buffer along with your thymus tissue sample in standard tubes, load tubes directly in the Bullet Blender, select time and speed, and press start.
  • Risk Free Purchase
    The Bullet Blender® comes with a 30 day money back guarantee and a 2 year warranty, with a 3 year warranty on the motor. The simple, reliable design enables the Bullet Blenders to sell for a fraction of the price of ultrasonic or other agitation based instruments, yet provides an easier, quicker technique.
Bullet Blender Homogenizer

Bullet Blender settings for Thymus tissue

Sample size

See the Protocol

microcentrifuge tube model (up to 300 mg) Small thymus samples
5mL tube model (100mg – 1g) Medium thymus samples

 

Selected publications for Thymus tissue

See all of our Bullet Blender publications!

Eriksson, A., Williams, M. J., Voisin, S., Hansson, I., Krishnan, A., Philippot, G., Yamskova, O., Herisson, F. M., Dnyansagar, R., Moschonis, G., Manios, Y., Chrousos, G. P., Olszewski, P. K., Frediksson, R., & Schiöth, H. B. (2015). Implication of coronin 7 in body weight regulation in humans, mice and flies. BMC Neuroscience, 16(1), 13. https://doi.org/10.1186/s12868-015-0151-9
Melero, M., García-Párraga, D., Corpa, J., Ortega, J., Rubio-Guerri, C., Crespo, J., Rivera-Arroyo, B., & Sánchez-Vizcaíno, J. (2014). First molecular detection and characterization of herpesvirus and poxvirus in a Pacific walrus (Odobenus rosmarus divergens). BMC Veterinary Research, 10(1), 968. https://doi.org/10.1186/s12917-014-0308-2
Austin, W. R., Armijo, A. L., Campbell, D. O., Singh, A. S., Hsieh, T., Nathanson, D., Herschman, H. R., Phelps, M. E., Witte, O. N., Czernin, J., & Radu, C. G. (2012). Nucleoside salvage pathway kinases regulate hematopoiesis by linking nucleotide metabolism with replication stress. Journal of Experimental Medicine, 209(12), 2215–2228. https://doi.org/10.1084/jem.20121061