Insect Homogenizer & Homogenization Protocol

Ideal for Insect Sample Homogenization

Do you spend lots of time and effort homogenizing insect samples? The Bullet Blender® is a multi-sample homogenizer that delivers high quality and superior yields. No other homogenizer comes close to delivering the Bullet Blender’s winning combination of top-quality performance and budget-friendly affordability.

The Bullet Blender® Homogenizer
Save Time, Effort and Get Superior Results

  • Consistent and High Yield Results
    Run up to 24 samples at the same time under microprocessor-controlled conditions, ensuring experimental reproducibility and high yield. Process samples from 10mg or less up to 3.5g.
  • No Cross Contamination
    No part of the Bullet Blender® ever touches the insect samples – the sample tubes are kept closed during homogenization. There are no probes to clean between samples.
  • Samples Stay Cool
    Homogenizing causes only a few degrees of heating. Our Gold models keep samples at 4°C.
  • Easy and Convenient to Use
    Just place beads and buffer along with your insect sample in standard tubes, load tubes directly in the Bullet Blender, select time and speed, and press start.
  • Risk Free Purchase
    The Bullet Blender® comes with a 30 day money back guarantee and a 2 year warranty, with a 3 year warranty on the motor. The simple, reliable design enables the Bullet Blenders to sell for a fraction of the price of ultrasonic or other agitation based instruments, yet provides an easier, quicker technique.
Bullet Blender Homogenizer

Bullet Blender settings for Insect samples

Sample size

See the Protocol

microcentrifuge tube model (up to 300 mg) Small insects (large soft-bodied)
microcentrifuge tube model (up to 300 mg) Small insects (light hard-bodied)

 

Selected publications for Insects

See all of our Bullet Blender publications!

Thangaraj, S. R., McCulloch, G. A., Subbarayalu, M., Subramaniam, C., & Walter, G. H. (2016). Development of microsatellite markers and a preliminary assessment of population structuring in the rice weevil, Sitophilus oryzae (L.). Journal of Stored Products Research, 66, 12–17. https://doi.org/10.1016/j.jspr.2015.12.005
Perkin, L., Elpidina, E. N., & Oppert, B. (2016). Expression patterns of cysteine peptidase genes across the Tribolium castaneum life cycle provide clues to biological function. PeerJ, 4, e1581. https://doi.org/10.7717/peerj.1581
Stanton-Geddes, J., Nguyen, A., Chick, L., Vincent, J., Vangala, M., Dunn, R. R., Ellison, A. M., Sanders, N. J., Gotelli, N. J., & Cahan, S. H. (2016). Thermal reactionomes reveal divergent responses to thermal extremes in warm and cool-climate ant species. BMC Genomics, 17, 171. https://doi.org/10.1186/s12864-016-2466-z
Nguyen, A. D., Gotelli, N. J., & Cahan, S. H. (2016). The evolution of heat shock protein sequences, cis-regulatory elements, and expression profiles in the eusocial Hymenoptera. BMC Evolutionary Biology, 16, 15. https://doi.org/10.1186/s12862-015-0573-0
Fros, J. J., Geertsema, C., Vogels, C. B., Roosjen, P. P., Failloux, A.-B., Vlak, J. M., Koenraadt, C. J., Takken, W., & Pijlman, G. P. (2015). West Nile Virus: High Transmission Rate in North-Western European Mosquitoes Indicates Its Epidemic Potential and Warrants Increased Surveillance. PLOS Neglected Tropical Diseases, 9(7), e0003956. https://doi.org/10.1371/journal.pntd.0003956
Blenkiron, C., Tsai, P., Brown, L. A., Tintinger, V., Askelund, K. J., Windsor, J. A., & Phillips, A. R. (2015). Characterisation of the Small RNAs in the Biomedically Important Green-Bottle Blowfly Lucilia sericata. PLOS ONE, 10(3), e0122203. https://doi.org/10.1371/journal.pone.0122203
Osborne, C. J., Mayo, C. E., Mullens, B. A., McDermott, E. G., Gerry, A. C., Reisen, W. K., & MacLachlan, N. J. (2015). Lack of Evidence for Laboratory and Natural Vertical Transmission of Bluetongue Virus in Culicoides sonorensis (Diptera: Ceratopogonidae). Journal of Medical Entomology, 52(2), 274–277. https://doi.org/10.1093/jme/tju063
Herter, E. K., Stauch, M., Gallant, M., Wolf, E., Raabe, T., & Gallant, P. (2015). snoRNAs are a novel class of biologically relevant Myc targets. BMC Biology, 13(1). https://doi.org/10.1186/s12915-015-0132-6
Fros, J. J., Miesen, P., Vogels, C. B., Gaibani, P., Sambri, V., Martina, B. E., Koenraadt, C. J., van Rij, R. P., Vlak, J. M., Takken, W., & Pijlman, G. P. (2015). Comparative Usutu and West Nile virus transmission potential by local Culex pipiens mosquitoes in north-western Europe. One Health, 1, 31–36. https://doi.org/10.1016/j.onehlt.2015.08.002
Chick, L. (2015). Linking physiology and biogeography: Disentangling the constraints on the distributions of ant species [University of Tennessee-Knoxville]. http://trace.tennessee.edu/cgi/viewcontent.cgi?article=4928&context=utk_graddiss
Kwon, D. H., Park, J. H., Ashok, P. A., Lee, U., & Lee, S. H. (2015). Screening of target genes for RNAi in Tetranychus urticae and RNAi toxicity enhancement by chimeric genes. Pesticide Biochemistry and Physiology. https://doi.org/10.1016/j.pestbp.2015.11.005
Marshall, K. E., & Sinclair, B. J. (2015). The relative importance of number, duration and intensity of cold stress events in determining survival and energetics of an overwintering insect. Functional Ecology, 29(3), 357–366. https://doi.org/10.1111/1365-2435.12328
Luo, S., Ahola, V., Shu, C., Xu, C., & Wang, R. (2015). Heat shock protein 70 gene family in the Glanville fritillary butterfly and their response to thermal stress. Gene, 556(2), 132–141. https://doi.org/10.1016/j.gene.2014.11.043
Mayo, C. E., Mullens, B. A., Reisen, W. K., Osborne, C. J., Gibbs, E. P. J., Gardner, I. A., & MacLachlan, N. J. (2014). Seasonal and Interseasonal Dynamics of Bluetongue Virus Infection of Dairy Cattle and Culicoides sonorensis Midges in Northern California – Implications for Virus Overwintering in Temperate Zones. PLoS ONE, 9(9), e106975. https://doi.org/10.1371/journal.pone.0106975
Li, M. W. M., Wang, J., Zhao, Y. O., & Fikrig, E. (2014). Innexin AGAP001476 Is Critical for Mediating Anti-Plasmodium Responses in Anopheles Mosquitoes. Journal of Biological Chemistry, 289(36), 24885–24897. https://doi.org/10.1074/jbc.M114.554519
Kang, S., Shields, A. R., Jupatanakul, N., & Dimopoulos, G. (2014). Suppressing Dengue-2 Infection by Chemical Inhibition of Aedes aegypti Host Factors. PLoS Neglected Tropical Diseases, 8(8), e3084. https://doi.org/10.1371/journal.pntd.0003084
Heisig, M., Abraham, N. M., Liu, L., Neelakanta, G., Mattessich, S., Sultana, H., Shang, Z., Ansari, J. M., Killiam, C., Walker, W., Cooley, L., Flavell, R. A., Agaisse, H., & Fikrig, E. (2014). Antivirulence Properties of an Antifreeze Protein. Cell Reports, 9(2), 417–424. https://doi.org/10.1016/j.celrep.2014.09.034
Kim, Y. H., Kwon, D. H., Ahn, H. M., Koh, Y. H., & Lee, S. H. (2014). Induction of soluble AChE expression via alternative splicing by chemical stress in Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 48, 75–82. https://doi.org/10.1016/j.ibmb.2014.03.001
Jupatanakul, N., Sim, S., & Dimopoulos, G. (2014). Aedes aegypti ML and Niemann-Pick type C family members are agonists of dengue virus infection. Developmental & Comparative Immunology, 43(1), 1–9. https://doi.org/10.1016/j.dci.2013.10.002
Hu, Y., Sopko, R., Foos, M., Kelley, C., Flockhart, I., Ammeux, N., Wang, X., Perkins, L., Perrimon, N., & Mohr, S. E. (2013). FlyPrimerBank: An Online Database for Drosophila melanogaster Gene Expression Analysis and Knockdown Evaluation of RNAi Reagents. G3: Genes|Genomes|Genetics, 3(9), 1607–1616. https://doi.org/10.1534/g3.113.007021
Sim, S., Jupatanakul, N., Ramirez, J. L., Kang, S., Romero-Vivas, C. M., Mohammed, H., & Dimopoulos, G. (2013). Transcriptomic Profiling of Diverse Aedes aegypti Strains Reveals Increased Basal-level Immune Activation in Dengue Virus-refractory Populations and Identifies Novel Virus-vector Molecular Interactions. PLoS Neglected Tropical Diseases, 7(7), e2295. https://doi.org/10.1371/journal.pntd.0002295
Kasumovic, M. M., & Seebacher, F. (2013). The active metabolic rate predicts a male spider’s proximity to females and expected fitness. Biology Letters, 9(2), 20121164–20121164. https://doi.org/10.1098/rsbl.2012.1164
Choi, J. B., Heo, W. I., Shin, T. Y., Bae, S. M., Kim, W. J., Kim, J. I., Kwon, M., Choi, J. Y., Je, Y. H., Jin, B. R., & Woo, S. D. (2013). Complete genomic sequences and comparative analysis of Mamestra brassicae nucleopolyhedrovirus isolated in Korea. Virus Genes, 47(1), 133–151. https://doi.org/10.1007/s11262-013-0922-2
Kwon, D. H., Park, J. H., & Lee, S. H. (2013). Screening of lethal genes for feeding RNAi by leaf disc-mediated systematic delivery of dsRNA in Tetranychus urticae. Pesticide Biochemistry and Physiology, 105(1), 69–75. https://doi.org/10.1016/j.pestbp.2012.12.001
Marshall, K. E. (2013). The sub-lethal effects of repeated cold exposure in insects. University of Western Ontario.
Koles, K., Nunnari, J., Korkut, C., Barria, R., Brewer, C., Li, Y., Leszyk, J., Zhang, B., & Budnik, V. (2012). Mechanism of Evenness Interrupted (Evi)-Exosome Release at Synaptic Boutons. Journal of Biological Chemistry, 287(20), 16820–16834. https://doi.org/10.1074/jbc.M112.342667
MacMillan, H. A., Williams, C. M., Staples, J. F., & Sinclair, B. J. (2012). Metabolism and energy supply below the critical thermal minimum of a chill-susceptible insect. Journal of Experimental Biology, 215(8), 1366–1372. https://doi.org/10.1242/jeb.066381
Sim, S., Ramirez, J. L., & Dimopoulos, G. (2012). Dengue Virus Infection of the Aedes aegypti Salivary Gland and Chemosensory Apparatus Induces Genes that Modulate Infection and Blood-Feeding Behavior. PLoS Pathogens, 8(3), e1002631. https://doi.org/10.1371/journal.ppat.1002631
Bourgeois, A. L., Rinderer, T. E., Sylvester, H. A., Holloway, B., & Oldroyd, B. P. (2012). Patterns of Apis mellifera infestation by Nosema ceranae support the parasite hypothesis for the evolution of extreme polyandry in eusocial insects. Apidologie, 43(5), 539–548. https://doi.org/10.1007/s13592-012-0121-5
Marshall, K. E., & Sinclair, B. J. (2012). Threshold temperatures mediate the impact of reduced snow cover on overwintering freeze-tolerant caterpillars. Naturwissenschaften, 99(1), 33–41. https://doi.org/10.1007/s00114-011-0866-0
Bourgeois, L., Sheppard, W. S., Sylvester, H. A., & Rinderer, T. E. (2010). Genetic Stock Identification of Russian Honey Bees. Journal of Economic Entomology, 103(3), 917–924. https://doi.org/10.1603/EC09335
Marshall, K. E., & Sinclair, B. J. (2010). Repeated stress exposure results in a survival-reproduction trade-off in Drosophila melanogaster. Proceedings of the Royal Society B: Biological Sciences, 277(1683), 963–969. https://doi.org/10.1098/rspb.2009.1807
Bazinet, A. L., Marshall, K. E., MacMillan, H. A., Williams, C. M., & Sinclair, B. J. (2010). Rapid changes in desiccation resistance in Drosophila melanogaster are facilitated by changes in cuticular permeability. Journal of Insect Physiology, 56(12), 2006–2012. https://doi.org/10.1016/j.jinsphys.2010.09.002
Bourgeois, A. L., Rinderer, T. E., Beaman, L. D., & Danka, R. G. (2010). Genetic detection and quantification of Nosema apis and N. ceranae in the honey bee. Journal of Invertebrate Pathology, 103(1), 53–58. https://doi.org/10.1016/j.jip.2009.10.009
Bourgeois, A. L., & Rinderer, T. E. (2009). Genetic Characterization of Russian Honey Bee Stock Selected for Improved Resistance to Varroa destructor. Journal of Economic Entomology, 102(3), 1233–1238. https://doi.org/10.1603/029.102.0349