Insect Homogenizer & Homogenization Protocol

Ideal for Insect Tissue Homogenization

Do you spend lots of time and effort homogenizing insect tissue samples? The Bullet Blender® tissue homogenizer delivers high quality and superior yields. No other homogenizer comes close to delivering the Bullet Blender’s winning combination of top-quality performance and budget-friendly affordability. See below for a insect tissue homogenization protocol.

Save Time, Effort and Get Superior Results with

The Bullet Blender Homogenizer

Consistent and High Yield Results

Run up to 24 samples at the same time under microprocessor-controlled conditions, ensuring experimental reproducibility and high yield. Process samples from 10mg or less up to 3.5g.

No Cross Contamination

No part of the Bullet Blender ever touches the tissue – the sample tubes are kept closed during homogenization. There are no probes to clean between samples.

Samples Stay Cool

The Bullet Blenders’ innovative and elegant design provides convective cooling of the samples, so they do not heat up more than several degrees. In fact, our Gold+ models hold the sample temperature to about 4ºC.

Easy and Convenient to Use

Just place beads and buffer along with your tissue sample in standard tubes, load tubes directly in the Bullet Blender, select time and speed, and press start.

Risk Free Purchase

Thousands of peer-reviewed journal articles attest to the consistency and quality of the Bullet Blender homogenizer. We offer a 2 year warranty, extendable to 4 years, because our Bullet Blenders are reliable and last for many years.  

Insect Tissue Homogenization Protocol

</

Sample size

See the Protocol

microcentrifuge tube model (up to 300 mg) Small insects (soft-bodied) samples
microcentrifuge tube model (up to 300 mg) Small insects (light and hard) samples

What Else Can You Homogenize? Tough or Soft, No Problem! 

The Bullet Blender can process a wide range of samples including organ tissue, cell culture, plant tissue, and small organisms. You can homogenize samples as tough as mouse femur or for gentle applications such as tissue dissociation or organelle isolation.

the Bullet Blender high-throughput tissue homogenizer

Want more guidance? Need a quote? Contact us:



    Bullet Blender Models

    Select Publications using the Bullet Blender to Homogenize Insect Tissue

    Thangaraj, S. R., McCulloch, G. A., Subbarayalu, M., Subramaniam, C., & Walter, G. H. (2016). Development of microsatellite markers and a preliminary assessment of population structuring in the rice weevil, Sitophilus oryzae (L.). Journal of Stored Products Research, 66, 12–17. https://doi.org/10.1016/j.jspr.2015.12.005
    Perkin, L., Elpidina, E. N., & Oppert, B. (2016). Expression patterns of cysteine peptidase genes across the Tribolium castaneum life cycle provide clues to biological function. PeerJ, 4, e1581. https://doi.org/10.7717/peerj.1581
    Stanton-Geddes, J., Nguyen, A., Chick, L., Vincent, J., Vangala, M., Dunn, R. R., Ellison, A. M., Sanders, N. J., Gotelli, N. J., & Cahan, S. H. (2016). Thermal reactionomes reveal divergent responses to thermal extremes in warm and cool-climate ant species. BMC Genomics, 17, 171. https://doi.org/10.1186/s12864-016-2466-z
    Nguyen, A. D., Gotelli, N. J., & Cahan, S. H. (2016). The evolution of heat shock protein sequences, cis-regulatory elements, and expression profiles in the eusocial Hymenoptera. BMC Evolutionary Biology, 16, 15. https://doi.org/10.1186/s12862-015-0573-0
    Fros, J. J., Geertsema, C., Vogels, C. B., Roosjen, P. P., Failloux, A.-B., Vlak, J. M., Koenraadt, C. J., Takken, W., & Pijlman, G. P. (2015). West Nile Virus: High Transmission Rate in North-Western European Mosquitoes Indicates Its Epidemic Potential and Warrants Increased Surveillance. PLOS Neglected Tropical Diseases, 9(7), e0003956. https://doi.org/10.1371/journal.pntd.0003956
    Blenkiron, C., Tsai, P., Brown, L. A., Tintinger, V., Askelund, K. J., Windsor, J. A., & Phillips, A. R. (2015). Characterisation of the Small RNAs in the Biomedically Important Green-Bottle Blowfly Lucilia sericata. PLOS ONE, 10(3), e0122203. https://doi.org/10.1371/journal.pone.0122203
    Osborne, C. J., Mayo, C. E., Mullens, B. A., McDermott, E. G., Gerry, A. C., Reisen, W. K., & MacLachlan, N. J. (2015). Lack of Evidence for Laboratory and Natural Vertical Transmission of Bluetongue Virus in Culicoides sonorensis (Diptera: Ceratopogonidae). Journal of Medical Entomology, 52(2), 274–277. https://doi.org/10.1093/jme/tju063
    Herter, E. K., Stauch, M., Gallant, M., Wolf, E., Raabe, T., & Gallant, P. (2015). snoRNAs are a novel class of biologically relevant Myc targets. BMC Biology, 13(1). https://doi.org/10.1186/s12915-015-0132-6
    Fros, J. J., Miesen, P., Vogels, C. B., Gaibani, P., Sambri, V., Martina, B. E., Koenraadt, C. J., van Rij, R. P., Vlak, J. M., Takken, W., & Pijlman, G. P. (2015). Comparative Usutu and West Nile virus transmission potential by local Culex pipiens mosquitoes in north-western Europe. One Health, 1, 31–36. https://doi.org/10.1016/j.onehlt.2015.08.002
    Chick, L. (2015). Linking physiology and biogeography: Disentangling the constraints on the distributions of ant species [University of Tennessee-Knoxville]. http://trace.tennessee.edu/cgi/viewcontent.cgi?article=4928&context=utk_graddiss
    Kwon, D. H., Park, J. H., Ashok, P. A., Lee, U., & Lee, S. H. (2015). Screening of target genes for RNAi in Tetranychus urticae and RNAi toxicity enhancement by chimeric genes. Pesticide Biochemistry and Physiology. https://doi.org/10.1016/j.pestbp.2015.11.005
    Marshall, K. E., & Sinclair, B. J. (2015). The relative importance of number, duration and intensity of cold stress events in determining survival and energetics of an overwintering insect. Functional Ecology, 29(3), 357–366. https://doi.org/10.1111/1365-2435.12328
    Luo, S., Ahola, V., Shu, C., Xu, C., & Wang, R. (2015). Heat shock protein 70 gene family in the Glanville fritillary butterfly and their response to thermal stress. Gene, 556(2), 132–141. https://doi.org/10.1016/j.gene.2014.11.043
    Mayo, C. E., Mullens, B. A., Reisen, W. K., Osborne, C. J., Gibbs, E. P. J., Gardner, I. A., & MacLachlan, N. J. (2014). Seasonal and Interseasonal Dynamics of Bluetongue Virus Infection of Dairy Cattle and Culicoides sonorensis Midges in Northern California – Implications for Virus Overwintering in Temperate Zones. PLoS ONE, 9(9), e106975. https://doi.org/10.1371/journal.pone.0106975
    Li, M. W. M., Wang, J., Zhao, Y. O., & Fikrig, E. (2014). Innexin AGAP001476 Is Critical for Mediating Anti-Plasmodium Responses in Anopheles Mosquitoes. Journal of Biological Chemistry, 289(36), 24885–24897. https://doi.org/10.1074/jbc.M114.554519
    Kang, S., Shields, A. R., Jupatanakul, N., & Dimopoulos, G. (2014). Suppressing Dengue-2 Infection by Chemical Inhibition of Aedes aegypti Host Factors. PLoS Neglected Tropical Diseases, 8(8), e3084. https://doi.org/10.1371/journal.pntd.0003084
    Heisig, M., Abraham, N. M., Liu, L., Neelakanta, G., Mattessich, S., Sultana, H., Shang, Z., Ansari, J. M., Killiam, C., Walker, W., Cooley, L., Flavell, R. A., Agaisse, H., & Fikrig, E. (2014). Antivirulence Properties of an Antifreeze Protein. Cell Reports, 9(2), 417–424. https://doi.org/10.1016/j.celrep.2014.09.034
    Kim, Y. H., Kwon, D. H., Ahn, H. M., Koh, Y. H., & Lee, S. H. (2014). Induction of soluble AChE expression via alternative splicing by chemical stress in Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 48, 75–82. https://doi.org/10.1016/j.ibmb.2014.03.001
    Jupatanakul, N., Sim, S., & Dimopoulos, G. (2014). Aedes aegypti ML and Niemann-Pick type C family members are agonists of dengue virus infection. Developmental & Comparative Immunology, 43(1), 1–9. https://doi.org/10.1016/j.dci.2013.10.002
    Hu, Y., Sopko, R., Foos, M., Kelley, C., Flockhart, I., Ammeux, N., Wang, X., Perkins, L., Perrimon, N., & Mohr, S. E. (2013). FlyPrimerBank: An Online Database for Drosophila melanogaster Gene Expression Analysis and Knockdown Evaluation of RNAi Reagents. G3&amp;#58; Genes|Genomes|Genetics, 3(9), 1607–1616. https://doi.org/10.1534/g3.113.007021
    Sim, S., Jupatanakul, N., Ramirez, J. L., Kang, S., Romero-Vivas, C. M., Mohammed, H., & Dimopoulos, G. (2013). Transcriptomic Profiling of Diverse Aedes aegypti Strains Reveals Increased Basal-level Immune Activation in Dengue Virus-refractory Populations and Identifies Novel Virus-vector Molecular Interactions. PLoS Neglected Tropical Diseases, 7(7), e2295. https://doi.org/10.1371/journal.pntd.0002295
    Kasumovic, M. M., & Seebacher, F. (2013). The active metabolic rate predicts a male spider’s proximity to females and expected fitness. Biology Letters, 9(2), 20121164–20121164. https://doi.org/10.1098/rsbl.2012.1164
    Choi, J. B., Heo, W. I., Shin, T. Y., Bae, S. M., Kim, W. J., Kim, J. I., Kwon, M., Choi, J. Y., Je, Y. H., Jin, B. R., & Woo, S. D. (2013). Complete genomic sequences and comparative analysis of Mamestra brassicae nucleopolyhedrovirus isolated in Korea. Virus Genes, 47(1), 133–151. https://doi.org/10.1007/s11262-013-0922-2
    Kwon, D. H., Park, J. H., & Lee, S. H. (2013). Screening of lethal genes for feeding RNAi by leaf disc-mediated systematic delivery of dsRNA in Tetranychus urticae. Pesticide Biochemistry and Physiology, 105(1), 69–75. https://doi.org/10.1016/j.pestbp.2012.12.001
    Marshall, K. E. (2013). The sub-lethal effects of repeated cold exposure in insects. University of Western Ontario.
    Koles, K., Nunnari, J., Korkut, C., Barria, R., Brewer, C., Li, Y., Leszyk, J., Zhang, B., & Budnik, V. (2012). Mechanism of Evenness Interrupted (Evi)-Exosome Release at Synaptic Boutons. Journal of Biological Chemistry, 287(20), 16820–16834. https://doi.org/10.1074/jbc.M112.342667
    MacMillan, H. A., Williams, C. M., Staples, J. F., & Sinclair, B. J. (2012). Metabolism and energy supply below the critical thermal minimum of a chill-susceptible insect. Journal of Experimental Biology, 215(8), 1366–1372. https://doi.org/10.1242/jeb.066381
    Sim, S., Ramirez, J. L., & Dimopoulos, G. (2012). Dengue Virus Infection of the Aedes aegypti Salivary Gland and Chemosensory Apparatus Induces Genes that Modulate Infection and Blood-Feeding Behavior. PLoS Pathogens, 8(3), e1002631. https://doi.org/10.1371/journal.ppat.1002631
    Bourgeois, A. L., Rinderer, T. E., Sylvester, H. A., Holloway, B., & Oldroyd, B. P. (2012). Patterns of Apis mellifera infestation by Nosema ceranae support the parasite hypothesis for the evolution of extreme polyandry in eusocial insects. Apidologie, 43(5), 539–548. https://doi.org/10.1007/s13592-012-0121-5
    Marshall, K. E., & Sinclair, B. J. (2012). Threshold temperatures mediate the impact of reduced snow cover on overwintering freeze-tolerant caterpillars. Naturwissenschaften, 99(1), 33–41. https://doi.org/10.1007/s00114-011-0866-0
    Bourgeois, L., Sheppard, W. S., Sylvester, H. A., & Rinderer, T. E. (2010). Genetic Stock Identification of Russian Honey Bees. Journal of Economic Entomology, 103(3), 917–924. https://doi.org/10.1603/EC09335
    Marshall, K. E., & Sinclair, B. J. (2010). Repeated stress exposure results in a survival-reproduction trade-off in Drosophila melanogaster. Proceedings of the Royal Society B: Biological Sciences, 277(1683), 963–969. https://doi.org/10.1098/rspb.2009.1807
    Bazinet, A. L., Marshall, K. E., MacMillan, H. A., Williams, C. M., & Sinclair, B. J. (2010). Rapid changes in desiccation resistance in Drosophila melanogaster are facilitated by changes in cuticular permeability. Journal of Insect Physiology, 56(12), 2006–2012. https://doi.org/10.1016/j.jinsphys.2010.09.002
    Bourgeois, A. L., Rinderer, T. E., Beaman, L. D., & Danka, R. G. (2010). Genetic detection and quantification of Nosema apis and N. ceranae in the honey bee. Journal of Invertebrate Pathology, 103(1), 53–58. https://doi.org/10.1016/j.jip.2009.10.009
    Bourgeois, A. L., & Rinderer, T. E. (2009). Genetic Characterization of Russian Honey Bee Stock Selected for Improved Resistance to Varroa destructor. Journal of Economic Entomology, 102(3), 1233–1238. https://doi.org/10.1603/029.102.0349

    Have any questions? Ask us!

    Success!

    The discount has been applied. You will see it when you checkout.

    There has been a problem

    Unfortunately this discount cannot be applied to your cart.