Lymph Node Tissue Homogenizer & Homogenization Protocol

Ideal for Lymph Node Tissue Homogenization

Do you spend lots of time and effort homogenizing lymph node tissue samples? The Bullet Blender® tissue homogenizer delivers high quality and superior yields. No other homogenizer comes close to delivering the Bullet Blender’s winning combination of top-quality performance and budget-friendly affordability. See below for a lymph node tissue homogenization protocol.

The Bullet Blender® Homogenizer
Save Time, Effort and Get Superior Results

  • Consistent and High Yield Results
    Run up to 24 samples at the same time under microprocessor-controlled conditions, ensuring experimental reproducibility and high yield. Process samples from 10mg or less up to 3.5g.
  • No Cross Contamination
    No part of the Bullet Blender® ever touches the lymph node samples – the sample tubes are kept closed during homogenization. There are no probes to clean between samples.
  • Samples Stay Cool
    Homogenizing causes only a few degrees of heating. Our Gold models keep samples at 4°C.
  • Easy and Convenient to Use
    Just place beads and buffer along with your lymph node sample in standard tubes, load tubes directly in the Bullet Blender, select time and speed, and press start.
  • Risk Free Purchase
    The Bullet Blender® comes with a 30 day money back guarantee and a 2 year warranty, with a 3 year warranty on the motor. The simple, reliable design enables the Bullet Blenders to sell for a fraction of the price of ultrasonic or other agitation based instruments, yet provides an easier, quicker technique.
Bullet Blender Homogenizer

Bullet Blender Homogenization Protocol for Lymph Node Tissue

Sample size

See the Protocol

microcentrifuge tube model (up to 300 mg) Small lymphatic tissue samples
5mL tube model (100mg – 1g) Medium lymphatic tissue samples


Selected Publications for Lymphatic Tissue

See all of our Bullet Blender publications!

Hoover, C. E., Davenport, K. A., Henderson, D. M., Pulscher, L. A., Mathiason, C. K., Zabel, M. D., & Hoover, E. A. (2016). Detection and Quantification of CWD Prions in Fixed Paraffin Embedded Tissues by Real-Time Quaking-Induced Conversion. Scientific Reports, 6.
Falendysz, E. A., Lopera, J. G., Lorenzsonn, F., Salzer, J. S., Hutson, C. L., Doty, J., Gallardo-Romero, N., Carroll, D. S., Osorio, J. E., & Rocke, T. E. (2015). Further Assessment of Monkeypox Virus Infection in Gambian Pouched Rats (Cricetomys gambianus) Using In Vivo Bioluminescent Imaging. PLOS Neglected Tropical Diseases, 9(10), e0004130.
Liao, X., Ren, J., Wei, C.-H., Ross, A. C., Cecere, T. E., Jortner, B. S., Ahmed, S. A., & Luo, X. M. (2015). Paradoxical Effects of All-Trans-Retinoic Acid on Lupus-Like Disease in the MRL/lpr Mouse Model. PLOS ONE, 10(3), e0118176.
Mitchell, D. A., Batich, K. A., Gunn, M. D., Huang, M.-N., Sanchez-Perez, L., Nair, S. K., Congdon, K. L., Reap, E. A., Archer, G. E., Desjardins, A., Friedman, A. H., Friedman, H. S., Herndon II, J. E., Coan, A., McLendon, R. E., Reardon, D. A., Vredenburgh, J. J., Bigner, D. D., & Sampson, J. H. (2015). Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature, 519(7543), 366–369.
Palomares, R. A., Hurley, D. J., Woolums, A. R., Parrish, J. E., & Brock, K. V. (2014). Analysis of mRNA expression for genes associated with regulatory T lymphocytes (CD25, FoxP3, CTLA4, and IDO) after experimental infection with bovine viral diarrhea virus of low or high virulence in beef calves. Comparative Immunology, Microbiology and Infectious Diseases, 37(5–6), 331–338.
Palomares, R. A., Parrish, J., Woolums, A. R., Brock, K. V., & Hurley, D. J. (2014). Expression of toll-like receptors and co-stimulatory molecules in lymphoid tissue during experimental infection of beef calves with bovine viral diarrhea virus of low and high virulence. Veterinary Research Communications, 38(4), 329–335.
Borschensky, C. M., & Reinacher, M. (2014). Mutations in the 3c and 7b genes of feline coronavirus in spontaneously affected FIP cats. Research in Veterinary Science, 97(2), 333–340.
Goosen, W. J., Miller, M. A., Chegou, N. N., Cooper, D., Warren, R. M., van Helden, P. D., & Parsons, S. D. C. (2014). Agreement between assays of cell-mediated immunity utilizing Mycobacterium bovis-specific antigens for the diagnosis of tuberculosis in African buffaloes (Syncerus caffer). Veterinary Immunology and Immunopathology, 160(1–2), 133–138.
Palomares, R. A., Brock, K. V., & Walz, P. H. (2014). Differential expression of pro-inflammatory and anti-inflammatory cytokines during experimental infection with low or high virulence bovine viral diarrhea virus in beef calves. Veterinary Immunology and Immunopathology, 157(3–4), 149–154.
Melero, M., García-Párraga, D., Corpa, J., Ortega, J., Rubio-Guerri, C., Crespo, J., Rivera-Arroyo, B., & Sánchez-Vizcaíno, J. (2014). First molecular detection and characterization of herpesvirus and poxvirus in a Pacific walrus (Odobenus rosmarus divergens). BMC Veterinary Research, 10(1), 968.
Silver, A. C., Dunne, D. W., Zeiss, C. J., Bockenstedt, L. K., Radolf, J. D., Salazar, J. C., & Fikrig, E. (2013). MyD88 Deficiency Markedly Worsens Tissue Inflammation and Bacterial Clearance in Mice Infected with Treponema pallidum, the Agent of Syphilis. PLoS ONE, 8(8), e71388.
Sahu, R. P., Petrache, I., Van Demark, M. J., Rashid, B. M., Ocana, J. A., Tang, Y., Yi, Q., Turner, M. J., Konger, R. L., & Travers, J. B. (2013). Cigarette Smoke Exposure Inhibits Contact Hypersensitivity via the Generation of Platelet-Activating Factor Agonists. The Journal of Immunology, 190(5), 2447–2454.
Palomares, R. A., Walz, H. G., & Brock, K. V. (2013). Expression of type I interferon-induced antiviral state and pro-apoptosis markers during experimental infection with low or high virulence bovine viral diarrhea virus in beef calves. Virus Research, 173(2), 260–269.
Austin, W. R., Armijo, A. L., Campbell, D. O., Singh, A. S., Hsieh, T., Nathanson, D., Herschman, H. R., Phelps, M. E., Witte, O. N., Czernin, J., & Radu, C. G. (2012). Nucleoside salvage pathway kinases regulate hematopoiesis by linking nucleotide metabolism with replication stress. Journal of Experimental Medicine, 209(12), 2215–2228.
Bessen, R. A., Robinson, C. J., Seelig, D. M., Watschke, C. P., Lowe, D., Shearin, H., Martinka, S., & Babcock, A. M. (2011). Transmission of Chronic Wasting Disease Identifies a Prion Strain Causing Cachexia and Heart Infection in Hamsters. PLoS ONE, 6(12), e28026.