Skin Tissue Homogenizer & Homogenization Protocol

Ideal for skin Tissue Homogenization

Do you spend lots of time and effort homogenizing skin tissue samples? The Bullet Blender® tissue homogenizer delivers high quality and superior yields. No other homogenizer comes close to delivering the Bullet Blender’s winning combination of top-quality performance and budget-friendly affordability.

The Bullet Blender® Homogenizer
Save Time, Effort and Get Superior Results

  • Consistent and High Yield Results
    Run up to 24 samples at the same time under microprocessor-controlled conditions, ensuring experimental reproducibility and high yield. Process samples from 10mg or less up to 3.5g.
  • No Cross Contamination
    No part of the Bullet Blender® ever touches the skin samples – the sample tubes are kept closed during homogenization. There are no probes to clean between samples.
  • Samples Stay Cool
    Homogenizing causes only a few degrees of heating. Our Gold models keep samples at 4°C.
  • Easy and Convenient to Use
    Just place beads and buffer along with your skin sample in standard tubes, load tubes directly in the Bullet Blender, select time and speed, and press start.
  • Risk Free Purchase
    The Bullet Blender® comes with a 30 day money back guarantee and a 2 year warranty, with a 3 year warranty on the motor. The simple, reliable design enables the Bullet Blenders to sell for a fraction of the price of ultrasonic or other agitation based instruments, yet provides an easier, quicker technique.
Bullet Blender Homogenizer

Bullet Blender settings for Skin tissue

Sample size

See the Protocol

microcentrifuge tube model (up to 300 mg) Small skin samples
5mL tube model (100mg – 1g) Medium skin samples


Selected publications for Skin tissue

See all of our Bullet Blender publications!

Wen, L., Gao, Q., Ma, C., Ge, Y., You, L., Liu, R. H., Fu, X., & Liu, D. (2016). Effect of polysaccharides from Tremella fuciformis on UV-induced photoaging. Journal of Functional Foods, 20, 400–410.
Falendysz, E. A., Lopera, J. G., Lorenzsonn, F., Salzer, J. S., Hutson, C. L., Doty, J., Gallardo-Romero, N., Carroll, D. S., Osorio, J. E., & Rocke, T. E. (2015). Further Assessment of Monkeypox Virus Infection in Gambian Pouched Rats (Cricetomys gambianus) Using In Vivo Bioluminescent Imaging. PLOS Neglected Tropical Diseases, 9(10), e0004130.
Kuo, Y.-H., Chen, C.-W., Chu, Y., Lin, P., & Chiang, H.-M. (2015). In Vitro and In Vivo Studies on Protective Action of N-Phenethyl Caffeamide against Photodamage of Skin. PLOS ONE, 10(9), e0136777.
Danan-Gotthold, M., Golan-Gerstl, R., Eisenberg, E., Meir, K., Karni, R., & Levanon, E. Y. (2015). Identification of recurrent regulated alternative splicing events across human solid tumors. Nucleic Acids Research, 43(10), 5130–5144.
Dao, V., Pandeswara, S., Liu, Y., Hurez, V., Dodds, S., Callaway, D., Liu, A., Hasty, P., Sharp, Z. D., & Curiel, T. J. (2015). Prevention of Carcinogen and Inflammation-Induced Dermal Cancer by Oral Rapamycin Includes Reducing Genetic Damage. Cancer Prevention Research, 8(5), 400–409.
Mitchell, D. A., Batich, K. A., Gunn, M. D., Huang, M.-N., Sanchez-Perez, L., Nair, S. K., Congdon, K. L., Reap, E. A., Archer, G. E., Desjardins, A., Friedman, A. H., Friedman, H. S., Herndon II, J. E., Coan, A., McLendon, R. E., Reardon, D. A., Vredenburgh, J. J., Bigner, D. D., & Sampson, J. H. (2015). Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature, 519(7543), 366–369.
Kim, C.-H., Cheong, K. A., Lim, W. S., Park, H.-M., & Lee, A.-Y. (2015). Effects of low-dose light-emitting-diode therapy in combination with water bath for atopic dermatitis in NC/Nga mice. Photodermatology, Photoimmunology & Photomedicine, n/a-n/a.
Kim, C.-H., Kim, J.-Y., & Lee, A.-Y. (2015). Therapeutic and immunomodulatory effects of glucosamine in combination with low-dose cyclosporine A in a murine model of imiquimod-induced psoriasis. European Journal of Pharmacology, 756, 43–51.
Sebastian, R., Chau, E., Fillmore, P., Matthews, J., Price, L. A., Sidhaye, V., & Milner, S. M. (2015). Epidermal aquaporin-3 is increased in the cutaneous burn wound. Burns, 41(4), 843–847.
Besschetnova, T. Y., Ichimura, T., Katebi, N., St. Croix, B., Bonventre, J. V., & Olsen, B. R. (2015). Regulatory mechanisms of anthrax toxin receptor 1-dependent vascular and connective tissue homeostasis. Matrix Biology, 42, 56–73.
Krull, A. C., Shearer, J. K., Gorden, P. J., Cooper, V. L., Phillips, G. J., & Plummer, P. J. (2014). Deep Sequencing Analysis Reveals Temporal Microbiota Changes Associated with Development of Bovine Digital Dermatitis. Infection and Immunity, 82(8), 3359–3373.
van der Plas-Duivesteijn, S. J., Mohammed, Y., Dalebout, H., Meijer, A., Botermans, A., Hoogendijk, J. L., Henneman, A. A., Deelder, A. M., Spaink, H. P., & Palmblad, M. (2014). Identifying Proteins in Zebrafish Embryos Using Spectral Libraries Generated from Dissected Adult Organs and Tissues. Journal of Proteome Research, 13(3), 1537–1544.
Neely, C. J., Kartchner, L. B., Mendoza, A. E., Linz, B. M., Frelinger, J. A., Wolfgang, M. C., Maile, R., & Cairns, B. A. (2014). Flagellin Treatment Prevents Increased Susceptibility to Systemic Bacterial Infection after Injury by Inhibiting Anti-Inflammatory IL-10+ IL-12- Neutrophil Polarization. PLoS ONE, 9(1), e85623.
Damodarasamy, M., Johnson, R. S., Bentov, I., MacCoss, M. J., Vernon, R. B., & Reed, M. J. (2014). Hyaluronan enhances wound repair and increases collagen III in aged dermal wounds: Hyaluronan and wound repair in aging. Wound Repair and Regeneration, 22(4), 521–526.
Melero, M., García-Párraga, D., Corpa, J., Ortega, J., Rubio-Guerri, C., Crespo, J., Rivera-Arroyo, B., & Sánchez-Vizcaíno, J. (2014). First molecular detection and characterization of herpesvirus and poxvirus in a Pacific walrus (Odobenus rosmarus divergens). BMC Veterinary Research, 10(1), 968.
Dhall, S., Do, D. C., Garcia, M., Kim, J., Mirebrahim, S. H., Lyubovitsky, J., Lonardi, S., Nothnagel, E. A., Schiller, N., & Martins-Green, M. (2014). Generating and Reversing Chronic Wounds in Diabetic Mice by Manipulating Wound Redox Parameters. Journal of Diabetes Research, 2014, 1–18.
Silver, A. C., Dunne, D. W., Zeiss, C. J., Bockenstedt, L. K., Radolf, J. D., Salazar, J. C., & Fikrig, E. (2013). MyD88 Deficiency Markedly Worsens Tissue Inflammation and Bacterial Clearance in Mice Infected with Treponema pallidum, the Agent of Syphilis. PLoS ONE, 8(8), e71388.
Kim, C.-H., Cheong, K. A., & Lee, A.-Y. (2013). 850nm light-emitting-diode phototherapy plus low-dose tacrolimus (FK-506) as combination therapy in the treatment of dermatophagoides farinae-induced atopic dermatitis-like skin lesions in NC/Nga mice. Journal of Dermatological Science, 72(2), 142–148.
Nichols, D. P., Caceres, S., Caverly, L., Fratelli, C., Kim, S. H., Malcolm, K., Poch, K. R., Saavedra, M., Solomon, G., Taylor-Cousar, J., Moskowitz, S., & Nick, J. A. (2013). Effects of azithromycin in Pseudomonas aeruginosa burn wound infection. Journal of Surgical Research, 183(2), 767–776.
Kim, C.-H., Choi, Y.-S., Cheong, K. Ah., & Lee, A.-Y. (2013). Mechanism underlying the effect of combined therapy using glucosamine and low-dose cyclosporine A on the development of atopic dermatitis-like skin lesions in NC/Nga mice. International Immunopharmacology, 15(2), 424–432.
Song, J. S., Kim, S.-O., Kim, S.-H., Choi, H.-J., Son, H.-K., Jung, H.-S., Kim, C.-S., & Lee, J.-H. (2012). In Vitro and In Vivo Characteristics of Stem Cells Derived from the Periodontal Ligament of Human Deciduous and Permanent Teeth. Tissue Engineering Part A, 18(19–20), 2040–2051.
Petreaca, M. L., Do, D., Dhall, S., McLelland, D., Serafino, A., Lyubovitsky, J., Schiller, N., & Martins-Green, M. M. (2012). Deletion of a tumor necrosis superfamily gene in mice leads to impaired healing that mimics chronic wounds in humans: LIGHT−/− mice wounds mimic human chronic ulcers. Wound Repair and Regeneration, 20(3), 353–366.
von Grote, E. C., Venkatakrishnan, V., Duo, J., & Stenken, J. A. (2011). Long-term subcutaneous microdialysis sampling and qRT-PCR of MCP-1, IL-6 and IL-10 in freely-moving rats. Mol. BioSyst., 7(1), 150–161.
Marji, J., O’Donoghue, S. I., McClintock, D., Satagopam, V. P., Schneider, R., Ratner, D., J. Worman, H., Gordon, L. B., & Djabali, K. (2010). Defective Lamin A-Rb Signaling in Hutchinson-Gilford Progeria Syndrome and Reversal by Farnesyltransferase Inhibition. PLoS ONE, 5(6), e11132.