Stomach Tissue Homogenizer & Homogenization Protocol

Ideal for Stomach Tissue Homogenization

Do you spend lots of time and effort homogenizing stomach tissue samples? The Bullet Blender® tissue homogenizer delivers high quality and superior yields. No other homogenizer comes close to delivering the Bullet Blender’s winning combination of top-quality performance and budget-friendly affordability.

The Bullet Blender® Homogenizer
Save Time, Effort and Get Superior Results

  • Consistent and High Yield Results
    Run up to 24 samples at the same time under microprocessor-controlled conditions, ensuring experimental reproducibility and high yield. Process samples from 10mg or less up to 3.5g.
  • No Cross Contamination
    No part of the Bullet Blender® ever touches the stomach samples – the sample tubes are kept closed during homogenization. There are no probes to clean between samples.
  • Samples Stay Cool
    Homogenizing causes only a few degrees of heating. Our Gold models keep samples at 4°C.
  • Easy and Convenient to Use
    Just place beads and buffer along with your stomach sample in standard tubes, load tubes directly in the Bullet Blender, select time and speed, and press start.
  • Risk Free Purchase
    The Bullet Blender® comes with a 30 day money back guarantee and a 2 year warranty, with a 3 year warranty on the motor. The simple, reliable design enables the Bullet Blenders to sell for a fraction of the price of ultrasonic or other agitation based instruments, yet provides an easier, quicker technique.
Bullet Blender Homogenizer

Bullet Blender settings for Stomach tissue

Sample size

See the Protocol

microcentrifuge tube model (up to 300 mg) Small stomach samples
5mL tube model (100mg – 1g) Medium stomach samples

 

Selected publications for Stomach tissue

See all of our Bullet Blender publications!

Rocha, B. S., Lundberg, J. O., Radi, R., & Laranjinha, J. (2016). Role of nitrite, urate and pepsin in the gastroprotective effects of saliva. Redox Biology, 8, 407–414. https://doi.org/10.1016/j.redox.2016.04.002
Chen, I.-T., Lee, D.-Y., Huang, Y.-T., Kou, G.-H., Wang, H.-C., Chang, G.-D., & Lo, C.-F. (2016). Six Hours after Infection, the Metabolic Changes Induced by WSSV Neutralize the Host’s Oxidative Stress Defenses. Scientific Reports, 6, 27732. https://doi.org/10.1038/srep27732
Park, W. C., Kim, H.-R., Kang, D. B., Ryu, J.-S., Choi, K.-H., Lee, G.-O., Yun, K. J., Kim, K. Y., Park, R., Yoon, K.-H., Cho, J.-H., Lee, Y.-J., Chae, S.-C., Park, M.-C., & Park, D.-S. (2016). Comparative expression patterns and diagnostic efficacies of SR splicing factors and HNRNPA1 in gastric and colorectal cancer. BMC Cancer, 16, 358. https://doi.org/10.1186/s12885-016-2387-x
Falendysz, E. A., Lopera, J. G., Lorenzsonn, F., Salzer, J. S., Hutson, C. L., Doty, J., Gallardo-Romero, N., Carroll, D. S., Osorio, J. E., & Rocke, T. E. (2015). Further Assessment of Monkeypox Virus Infection in Gambian Pouched Rats (Cricetomys gambianus) Using In Vivo Bioluminescent Imaging. PLOS Neglected Tropical Diseases, 9(10), e0004130. https://doi.org/10.1371/journal.pntd.0004130
Booth, J. S., Salerno-Goncalves, R., Blanchard, T. G., Patil, S. A., Kader, H. A., Safta, A. M., Morningstar, L. M., Czinn, S. J., Greenwald, B. D., & Sztein, M. B. (2015). Mucosal-Associated Invariant T Cells in the Human Gastric Mucosa and Blood: Role in Helicobacter pylori Infection. Frontiers in Immunology, 6. https://doi.org/10.3389/fimmu.2015.00466
Nasrollahzadeh, D., Malekzadeh, R., Ploner, A., Shakeri, R., Sotoudeh, M., Fahimi, S., Nasseri-Moghaddam, S., Kamangar, F., Abnet, C. C., Winckler, B., Islami, F., Boffetta, P., Brennan, P., Dawsey, S. M., & Ye, W. (2015). Variations of gastric corpus microbiota are associated with early esophageal squamous cell carcinoma and squamous dysplasia. Scientific Reports, 5, 8820. https://doi.org/10.1038/srep08820
Wang, S.-Y., Wang, H.-Y., Wang, T.-E., Wang, H.-H., Chang, W.-H., Chu, C.-H., Lin, S.-C., Yeh, H.-I., & Shih, S.-C. (2015). Delayed healing of gastric ulcer is associated with downregulation of connexin 32 in the gastric mucosa. Advances in Digestive Medicine, 2(2), 67–73. https://doi.org/10.1016/j.aidm.2015.01.004
Booth, J. S., Toapanta, F. R., Salerno-Goncalves, R., Patil, S., Kader, H. A., Safta, A. M., Czinn, S. J., Greenwald, B. D., & Sztein, M. B. (2014). Characterization and Functional Properties of Gastric Tissue-Resident Memory T Cells from Children, Adults, and the Elderly. Frontiers in Immunology, 5. https://doi.org/10.3389/fimmu.2014.00294
Melero, M., García-Párraga, D., Corpa, J., Ortega, J., Rubio-Guerri, C., Crespo, J., Rivera-Arroyo, B., & Sánchez-Vizcaíno, J. (2014). First molecular detection and characterization of herpesvirus and poxvirus in a Pacific walrus (Odobenus rosmarus divergens). BMC Veterinary Research, 10(1), 968. https://doi.org/10.1186/s12917-014-0308-2
Rolig, A. S., Cech, C., Ahler, E., Carter, J. E., & Ottemann, K. M. (2013). The Degree of Helicobacter pylori-Triggered Inflammation Is Manipulated by Preinfection Host Microbiota. Infection and Immunity, 81(5), 1382–1389. https://doi.org/10.1128/IAI.00044-13
Rocha, B. S., Gago, B., Barbosa, R. M., Lundberg, J. O., Mann, G. E., Radi, R., & Laranjinha, J. (2013). Pepsin is nitrated in the rat stomach, acquiring antiulcerogenic activity: A novel interaction between dietary nitrate and gut proteins. Free Radical Biology and Medicine, 58, 26–34. https://doi.org/10.1016/j.freeradbiomed.2012.12.017
Rubio-Guerri, C., Melero, M., Esperón, F., Bellière, E., Arbelo, M., Crespo, J., Sierra, E., García-Párraga, D., & Sánchez-Vizcaíno, J. (2013). Unusual striped dolphin mass mortality episode related to cetacean morbillivirus in the Spanish Mediterranean sea. BMC Veterinary Research, 9(1), 106. https://doi.org/10.1186/1746-6148-9-106
Rolig, A. S., Shanks, J., Carter, J. E., & Ottemann, K. M. (2012). Helicobacter pylori Requires TlpD-Driven Chemotaxis To Proliferate in the Antrum. Infection and Immunity, 80(10), 3713–3720. https://doi.org/10.1128/IAI.00407-12
Sause, W. E., Castillo, A. R., & Ottemann, K. M. (2012). The Helicobacter pylori Autotransporter ImaA (HP0289) Modulates the Immune Response and Contributes to Host Colonization. Infection and Immunity, 80(7), 2286–2296. https://doi.org/10.1128/IAI.00312-12
Rolig, A. S., Carter, J. E., & Ottemann, K. M. (2011). Bacterial chemotaxis modulates host cell apoptosis to establish a T-helper cell, type 17 (Th17)-dominant immune response in Helicobacter pylori infection. Proceedings of the National Academy of Sciences, 108(49), 19749–19754. https://doi.org/10.1073/pnas.1104598108
Lancaster, K. Z., & Pfeiffer, J. K. (2010). Limited Trafficking of a Neurotropic Virus Through Inefficient Retrograde Axonal Transport and the Type I Interferon Response. PLoS Pathogens, 6(3), e1000791. https://doi.org/10.1371/journal.ppat.1000791