Tissue dissociation

Ideal for Tissue Dissociation

Save Time, Effort and Get Superior Results with

Bullet Blender Homogenizer
  • Consistent Results
  • Samples Stay Cool
  • No Cross Contamination
  • Easy and Convenient
  • Risk Free
Do you spend lots of time and effort homogenizing tissue samples? The Bullet Blender® is a multi-sample homogenizer that delivers superior results. No other homogenizer comes close to delivering the Bullet Blender’s winning combination of top-quality performance and budget-friendly affordability.
  • Consistent and High Yield Results Run up to 24 samples at the same time under microprocessor-controlled conditions, ensuring experimental reproducibility and high yield. Process samples from 10mg or less up to 3.5g.
  • No Cross Contamination No part of the Bullet Blender® ever touches the tissue – the sample tubes are kept closed during homogenization. There are no probes to clean between samples.
  • Samples Stay Cool Homogenizing causes only a few degrees of heating. Our “Blue” model comes with a fan to maintain ambient temperatures.
  • Easy and Convenient to Use Just place beads and buffer along with your tissue sample in standard tubes, load tubes directly in the Bullet Blender, select time and speed, and press start.
  • Risk Free Purchase The Bullet Blender® comes with a 30 day money back guarantee and a 2 year warranty, with a 3 year warranty on the motor. The simple, reliable design enables the Bullet Blenders to sell for a fraction of the price of ultrasonic or other agitation based instruments, yet provides an easier, quicker technique.
  

Bullet Blender settings for Tissue Dissociation

Sample size

See the Protocol

microcentrifuge tube model (up to 300 mg)Small spleen samples for generation of splenocytes
 

Selected publications for Tissue Dissociation

See all of our Bullet Blender publications!

×
×
This is a static CMS block edited from admin panel. You can insert any content here. ×
This is a static CMS block edited from admin panel. You can insert any content here. ×