Homogenizer for Extracting Viruses

Ideal for Viral Extraction

tissue homogenizer homogenization viral virus extraction Plaque viral titer assay phage bacteriophage PFU

Save Time, Effort and Get Superior Results with

Bullet Blender Homogenizer
  • Consistent Results
  • Samples Stay Cool
  • No Cross Contamination
  • Easy and Convenient
  • Risk Free
Ideal for viral extraction from tissue samples. Do you spend lots of time and effort extracting viruses from tissue samples? The Bullet Blender® is a multi-sample homogenizer that delivers high quality and superior yields. No other homogenizer comes close to delivering the Bullet Blender’s winning combination of top-quality performance and budget-friendly affordability.
  • Consistent and High Yield Results
    Run up to 24 samples at the same time under microprocessor-controlled conditions, ensuring experimental reproducibility and high yield. Process samples from 10mg or less up to 3.5g.
  • No Cross Contamination
    No part of the Bullet Blender® ever touches the samples – the sample tubes are kept closed during homogenization. There are no probes to clean between samples.
  • Samples Stay Cool
    Homogenizing causes only a few degrees of heating. Our Gold models keep samples at 4°C.
  • Easy and Convenient to Use
    Just place beads and buffer along with your tissue samples in standard tubes, load tubes directly in the Bullet Blender, select time and speed, and press start.
  • Risk Free Purchase
    The Bullet Blender® comes with a 30 day money back guarantee and a 2 year warranty, with a 3 year warranty on the motor. The simple, reliable design enables the Bullet Blenders to sell for a fraction of the price of ultrasonic or other agitation based instruments, yet provides an easier, quicker technique.

Publications & References

Kumar, M., Belcaid, M., & Nerurkar, V. R. (2016). Identification of host genes leading to West Nile virus encephalitis in mice brain using RNA-seq analysis. Scientific Reports, 6. https://doi.org/10.1038/srep26350
Luethy, L. N., Erickson, A. K., Jesudhasan, P. R., Ikizler, M., Dermody, T. S., & Pfeiffer, J. K. (2016). Comparison of three neurotropic viruses reveals differences in viral dissemination to the central nervous system. Virology, 487, 1–10. https://doi.org/10.1016/j.virol.2015.09.019
Kang, S., Shields, A. R., Jupatanakul, N., & Dimopoulos, G. (2014). Suppressing Dengue-2 Infection by Chemical Inhibition of Aedes aegypti Host Factors. PLoS Neglected Tropical Diseases, 8(8), e3084. https://doi.org/10.1371/journal.pntd.0003084
Jupatanakul, N., Sim, S., & Dimopoulos, G. (2014). Aedes aegypti ML and Niemann-Pick type C family members are agonists of dengue virus infection. Developmental & Comparative Immunology, 43(1), 1–9. https://doi.org/10.1016/j.dci.2013.10.002
Kumar, M., Roe, K., O’Connell, M., & Nerurkar, V. R. (2015). Induction of virus-specific effector immune cell response limits virus replication and severe disease in mice infected with non-lethal West Nile virus Eg101 strain. Journal of Neuroinflammation, 12(1). https://doi.org/10.1186/s12974-015-0400-y
Palomares, R. A., Sakamoto, K., Walz, H. L., Brock, K. V., & Hurley, D. J. (2015). Acute infection with bovine viral diarrhea virus of low or high virulence leads to depletion and redistribution of WC1+ γδ T cells in lymphoid tissues of beef calves. Veterinary Immunology and Immunopathology, 167(3–4), 190–195. https://doi.org/10.1016/j.vetimm.2015.07.016
Marvin, S. A., Huerta, C. T., Sharp, B., Freiden, P., Cline, T. D., & Schultz-Cherry, S. (2015). Type I Interferon Response Limits Astrovirus Replication and Protects Against Increased Barrier Permeability in vitro and in vivo. Journal of Virology, JVI.02367-15. https://doi.org/10.1128/JVI.02367-15
Fros, J. J., Geertsema, C., Vogels, C. B., Roosjen, P. P., Failloux, A.-B., Vlak, J. M., Koenraadt, C. J., Takken, W., & Pijlman, G. P. (2015). West Nile Virus: High Transmission Rate in North-Western European Mosquitoes Indicates Its Epidemic Potential and Warrants Increased Surveillance. PLOS Neglected Tropical Diseases, 9(7), e0003956. https://doi.org/10.1371/journal.pntd.0003956
Fros, J. J., Miesen, P., Vogels, C. B., Gaibani, P., Sambri, V., Martina, B. E., Koenraadt, C. J., van Rij, R. P., Vlak, J. M., Takken, W., & Pijlman, G. P. (2015). Comparative Usutu and West Nile virus transmission potential by local Culex pipiens mosquitoes in north-western Europe. One Health, 1, 31–36. https://doi.org/10.1016/j.onehlt.2015.08.002
Kumar, M., Roe, K., Nerurkar, P. V., Orillo, B., Thompson, K. S., Verma, S., & Nerurkar, V. R. (2014). Reduced immune cell infiltration and increased pro-inflammatory mediators in the brain of Type 2 diabetic mouse model infected with West Nile virus. Journal of Neuroinflammation, 11(1), 80. https://doi.org/10.1186/1742-2094-11-80
Lancaster, K. Z., & Pfeiffer, J. K. (2011). Mechanisms Controlling Virulence Thresholds of Mixed Viral Populations. Journal of Virology, 85(19), 9778–9788. https://doi.org/10.1128/JVI.00355-11
Choi, J. B., Heo, W. I., Shin, T. Y., Bae, S. M., Kim, W. J., Kim, J. I., Kwon, M., Choi, J. Y., Je, Y. H., Jin, B. R., & Woo, S. D. (2013). Complete genomic sequences and comparative analysis of Mamestra brassicae nucleopolyhedrovirus isolated in Korea. Virus Genes, 47(1), 133–151. https://doi.org/10.1007/s11262-013-0922-2
Safronetz, D., Sogoba, N., Lopez, J. E., Maiga, O., Dahlstrom, E., Zivcec, M., Feldmann, F., Haddock, E., Fischer, R. J., Anderson, J. M., Munster, V. J., Branco, L., Garry, R., Porcella, S. F., Schwan, T. G., & Feldmann, H. (2013). Geographic Distribution and Genetic Characterization of Lassa Virus in Sub-Saharan Mali. PLoS Neglected Tropical Diseases, 7(12), e2582. https://doi.org/10.1371/journal.pntd.0002582
Lancaster, K. Z., & Pfeiffer, J. K. (2010). Limited Trafficking of a Neurotropic Virus Through Inefficient Retrograde Axonal Transport and the Type I Interferon Response. PLoS Pathogens, 6(3), e1000791. https://doi.org/10.1371/journal.ppat.1000791
Kumar, M., Roe, K., Nerurkar, P. V., Namekar, M., Orillo, B., Verma, S., & Nerurkar, V. R. (2012). Impaired Virus Clearance, Compromised Immune Response and Increased Mortality in Type 2 Diabetic Mice Infected with West Nile Virus. PLoS ONE, 7(8), e44682. https://doi.org/10.1371/journal.pone.0044682
Erickson, A. K., & Pfeiffer, J. K. (2013). Dynamic Viral Dissemination in Mice Infected with Yellow Fever Virus Strain 17D. Journal of Virology, 87(22), 12392–12397. https://doi.org/10.1128/JVI.02149-13
Sim, S., Ramirez, J. L., & Dimopoulos, G. (2012). Dengue Virus Infection of the Aedes aegypti Salivary Gland and Chemosensory Apparatus Induces Genes that Modulate Infection and Blood-Feeding Behavior. PLoS Pathogens, 8(3), e1002631. https://doi.org/10.1371/journal.ppat.1002631
Sim, S., Jupatanakul, N., Ramirez, J. L., Kang, S., Romero-Vivas, C. M., Mohammed, H., & Dimopoulos, G. (2013). Transcriptomic Profiling of Diverse Aedes aegypti Strains Reveals Increased Basal-level Immune Activation in Dengue Virus-refractory Populations and Identifies Novel Virus-vector Molecular Interactions. PLoS Neglected Tropical Diseases, 7(7), e2295. https://doi.org/10.1371/journal.pntd.0002295

The discount has been applied. You will see it when you checkout.

There has been a problem

Unfortunately this discount cannot be applied to your cart.