Zebrafish Homogenizer & Homogenization Protocol

Ideal for Zebrafish Samples Homogenization

Do you spend lots of time and effort homogenizing zebrafish samples? The Bullet Blender® is a multi-sample homogenizer that delivers high quality and superior yields. No other homogenizer comes close to delivering the Bullet Blender’s winning combination of top-quality performance and budget-friendly affordability.

The Bullet Blender® Homogenizer
Save Time, Effort and Get Superior Results

  • Consistent and High Yield Results
    Run up to 24 samples at the same time under microprocessor-controlled conditions, ensuring experimental reproducibility and high yield. Process samples from 10mg or less up to 3.5g.
  • No Cross Contamination
    No part of the Bullet Blender® ever touches the zebrafish samples – the sample tubes are kept closed during homogenization. There are no probes to clean between samples.
  • Samples Stay Cool
    Homogenizing causes only a few degrees of heating. Our Gold models keep samples at 4°C.
  • Easy and Convenient to Use
    Just place beads and buffer along with your zebrafish sample in standard tubes, load tubes directly in the Bullet Blender, select time and speed, and press start.
  • Risk Free Purchase
    The Bullet Blender® comes with a 30 day money back guarantee and a 2 year warranty, with a 3 year warranty on the motor. The simple, reliable design enables the Bullet Blenders to sell for a fraction of the price of ultrasonic or other agitation based instruments, yet provides an easier, quicker technique.
Bullet Blender Homogenizer

Bullet Blender settings for Zebrafish samples

Sample size

See the Protocol

microcentrifuge tube model (up to 300 mg) Small zebrafish samples
5mL tube model (100mg – 1g) Medium zebrafish samples


Selected publications for Zebrafish samples

See all of our Bullet Blender publications!

Sarasamma, S., Audira, G., Juniardi, S., Sampurna, B., Lai, Y.-H., Hao, E., Chen, J.-R., & Hsiao, C.-D. (2018). Evaluation of the Effects of Carbon 60 Nanoparticle Exposure to Adult Zebrafish: A Behavioral and Biochemical Approach to Elucidate the Mechanism of Toxicity. International Journal of Molecular Sciences, 19(12), 3853. https://doi.org/10.3390/ijms19123853
McDougall, M. Q., Choi, J., Stevens, J. F., Truong, L., Tanguay, R. L., & Traber, M. G. (2016). Lipidomics and H218O labeling techniques reveal increased remodeling of DHA-containing membrane phospholipids associated with abnormal locomotor responses in α-tocopherol deficient zebrafish (danio rerio) embryos. Redox Biology, 8, 165–174. https://doi.org/10.1016/j.redox.2016.01.004
Chatzopoulou, A., Heijmans, J. P. M., Burgerhout, E., Oskam, N., Spaink, H. P., Meijer, A. H., & Schaaf, M. J. M. (2016). Glucocorticoid-induced attenuation of the inflammatory response in zebrafish. Endocrinology, en20152050. https://doi.org/10.1210/en.2015-2050
Goodale, B. C., La Du, J., Tilton, S. C., Sullivan, C. M., Bisson, W. H., Waters, K. M., & Tanguay, R. L. (2015). Ligand-specific transcriptional mechanisms underlie aryl hydrocarbon receptor-mediated developmental toxicity of oxygenated PAHs. Toxicological Sciences, kfv139. https://doi.org/10.1093/toxsci/kfv139
Techer, D., Milla, S., Fontaine, P., Viot, S., & Thomas, M. (2015). Influence of waterborne gallic and pelargonic acid exposures on biochemical and reproductive parameters in the zebrafish ( Danio rerio ): Influence Of Gallic and Pelargonic Acid Exposure. Environmental Toxicology, n/a-n/a. https://doi.org/10.1002/tox.22228
Doldur-Balli, F., Ozel, M. N., Gulsuner, S., Tekinay, A. B., Ozcelik, T., Konu, O., & Adams, M. M. (2015). Characterization of a novel zebrafish (Danio rerio) gene, wdr81, associated with cerebellar ataxia, mental retardation and dysequilibrium syndrome (CAMRQ). BMC Neuroscience, 16(1). https://doi.org/10.1186/s12868-015-0229-4
Wong, R. Y., & Godwin, J. (2015). Neurotranscriptome profiles of multiple zebrafish strains. Genomics Data, 5, 206–209. https://doi.org/10.1016/j.gdata.2015.06.004
Elie, M. R., Choi, J., Nkrumah-Elie, Y. M., Gonnerman, G. D., Stevens, J. F., & Tanguay, R. L. (2015). Metabolomic analysis to define and compare the effects of PAHs and oxygenated PAHs in developing zebrafish. Environmental Research, 140, 502–510. https://doi.org/10.1016/j.envres.2015.05.009
Techer, D., Milla, S., Fontaine, P., Viot, S., & Thomas, M. (2015). Acute toxicity and sublethal effects of gallic and pelargonic acids on the zebrafish Danio rerio. Environmental Science and Pollution Research, 22(7), 5020–5029. https://doi.org/10.1007/s11356-015-4098-2
Peterman, E. M., Sullivan, C., Goody, M. F., Rodriguez-Nunez, I., Yoder, J. A., & Kim, C. H. (2015). Neutralization of Mitochondrial Superoxide by Superoxide Dismutase 2 Promotes Bacterial Clearance and Regulates Phagocyte Numbers in Zebrafish. Infection and Immunity, 83(1), 430–440. https://doi.org/10.1128/IAI.02245-14
van der Plas-Duivesteijn, S. J., Mohammed, Y., Dalebout, H., Meijer, A., Botermans, A., Hoogendijk, J. L., Henneman, A. A., Deelder, A. M., Spaink, H. P., & Palmblad, M. (2014). Identifying Proteins in Zebrafish Embryos Using Spectral Libraries Generated from Dissected Adult Organs and Tissues. Journal of Proteome Research, 13(3), 1537–1544. https://doi.org/10.1021/pr4010585
Tonyushkina, K. N., Shen, M.-C., Ortiz-Toro, T., & Karlstrom, R. O. (2014). Embryonic exposure to excess thyroid hormone causes thyrotrope cell death. Journal of Clinical Investigation, 124(1), 321–327. https://doi.org/10.1172/JCI70038
Lindenburg, P. W., Ramautar, R., Jayo, R. G., Chen, D. D. Y., & Hankemeier, T. (2014). Capillary electrophoresis-mass spectrometry using a flow-through microvial interface for cationic metabolome analysis: CE and CEC. ELECTROPHORESIS, 35(9), 1308–1314. https://doi.org/10.1002/elps.201300357
Kim, K.-T., Zaikova, T., Hutchison, J. E., & Tanguay, R. L. (2013). Gold Nanoparticles Disrupt Zebrafish Eye Development and Pigmentation. Toxicological Sciences, 133(2), 275–288. https://doi.org/10.1093/toxsci/kft081
Goodale, B. C., Tilton, S. C., Corvi, M. M., Wilson, G. R., Janszen, D. B., Anderson, K. A., Waters, K. M., & Tanguay, R. L. (2013). Structurally distinct polycyclic aromatic hydrocarbons induce differential transcriptional responses in developing zebrafish. Toxicology and Applied Pharmacology, 272(3), 656–670. https://doi.org/10.1016/j.taap.2013.04.024
Knecht, A. L., Goodale, B. C., Truong, L., Simonich, M. T., Swanson, A. J., Matzke, M. M., Anderson, K. A., Waters, K. M., & Tanguay, R. L. (2013). Comparative developmental toxicity of environmentally relevant oxygenated PAHs. Toxicology and Applied Pharmacology, 271(2), 266–275. https://doi.org/10.1016/j.taap.2013.05.006
Saili, K. S., Tilton, S. C., Waters, K. M., & Tanguay, R. L. (2013). Global gene expression analysis reveals pathway differences between teratogenic and non-teratogenic exposure concentrations of bisphenol A and 17β-estradiol in embryonic zebrafish. Reproductive Toxicology, 38, 89–101. https://doi.org/10.1016/j.reprotox.2013.03.009
Yang, J., & Xu, X. (2012). Actinin2 is required for the lateral alignment of Z discs and ventricular chamber enlargement during zebrafish cardiogenesis. The FASEB Journal, 26(10), 4230–4242. https://doi.org/10.1096/fj.12-207969
Saili, K. S., Corvi, M. M., Weber, D. N., Patel, A. U., Das, S. R., Przybyla, J., Anderson, K. A., & Tanguay, R. L. (2012). Neurodevelopmental low-dose bisphenol A exposure leads to early life-stage hyperactivity and learning deficits in adult zebrafish. Toxicology, 291(1–3), 83–92. https://doi.org/10.1016/j.tox.2011.11.001
Chen, C.-F., Chu, C.-Y., Chen, T.-H., Lee, S.-J., Shen, C.-N., & Hsiao, C.-D. (2011). Establishment of a Transgenic Zebrafish Line for Superficial Skin Ablation and Functional Validation of Apoptosis Modulators In Vivo. PLoS ONE, 6(5), e20654. https://doi.org/10.1371/journal.pone.0020654