Nucleotide Extraction

Ideal for Nucleotide Extraction

Do you spend lots of time and effort homogenizing extracting nucleotide samples? The Bullet Blender® is a multi-sample homogenizer that delivers superior results. No other homogenizer comes close to delivering the Bullet Blender’s winning combination of top-quality performance and budget-friendly affordability.

The Bullet Blender® Homogenizer
Save Time, Effort and Get Superior Results

  • Consistent and High Yield Results
    Run up to 24 samples at the same time under microprocessor-controlled conditions, ensuring experimental reproducibility and high yield. Process samples from 10mg or less up to 3.5g.
  • No Cross Contamination
    No part of the Bullet Blender® ever touches the samples – the sample tubes are kept closed during homogenization. There are no probes to clean between samples.
  • Samples Stay Cool
    Homogenizing causes only a few degrees of heating. Our models come with a fan to maintain ambient temperatures.
  • Easy and Convenient to Use
    Just place beads and buffer along with your sample in standard tubes, load tubes directly in the Bullet Blender, select time and speed, and press start.
  • Risk Free Purchase
    The Bullet Blender® comes with a 30 day money back guarantee and a 2 year warranty, with a 3 year warranty on the motor. The simple, reliable design enables the Bullet Blenders to sell for a fraction of the price of ultrasonic or other agitation based instruments, yet provides an easier, quicker technique.
Bullet Blender Homogenizer

Bullet Blender settings for Nucleotide Extraction

Nucleotides can be extracted from almost any sample using the Bullet Blender. Explore our Protocols list to find the best protocol for your sample.

 

Selected publications for Nucleotide Extraction

See all of our Bullet Blender publications!

Masterson, L., Winder, D. M., Ball, S. L. R., Vaughan, K., Lehmann, M., Scholtz, L.-U., Sterling, J. C., Sudhoff, H. H., & Goon, P. K. C. (2016). Molecular analyses of unselected head and neck cancer cases demonstrates that human papillomavirus transcriptional activity is positively associated with survival and prognosis. BMC Cancer, 16, 367. https://doi.org/10.1186/s12885-016-2398-7
de la Torre, A., Metivier, A., Chu, F., Laurens, L. M. L., Beck, D. A. C., Pienkos, P. T., Lidstrom, M. E., & Kalyuzhnaya, M. G. (2015). Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1). Microbial Cell Factories, 14(1). https://doi.org/10.1186/s12934-015-0377-3
Evers, M. M., Schut, M. H., Pepers, B. A., Atalar, M., van Belzen, M. J., Faull, R. L., Roos, R. A., & van Roon-Mom, W. M. (2015). Making (anti-) sense out of huntingtin levels in Huntington disease. Molecular Neurodegeneration, 10(1). https://doi.org/10.1186/s13024-015-0018-7
Janocko, L., Althouse, A. D., Brand, R. M., Cranston, R. D., & McGowan, I. (2015). The Molecular Characterization of Intestinal Explant HIV Infection Using Polymerase Chain Reaction-Based Techniques. AIDS Research and Human Retroviruses, 31(10), 981–991. https://doi.org/10.1089/aid.2015.0165
Sanchez, S., & Sellers, H. (2015). Biological Specimen Collection and Processing for Molecular Analysis. In M. V. Cunha & J. Inácio (Eds.), Veterinary Infection Biology: Molecular Diagnostics and High-Throughput Strategies (Vol. 1247, pp. 61–75). Springer New York. http://link.springer.com/10.1007/978-1-4939-2004-4_5
Melero, M., García-Párraga, D., Corpa, J., Ortega, J., Rubio-Guerri, C., Crespo, J., Rivera-Arroyo, B., & Sánchez-Vizcaíno, J. (2014). First molecular detection and characterization of herpesvirus and poxvirus in a Pacific walrus (Odobenus rosmarus divergens). BMC Veterinary Research, 10(1), 968. https://doi.org/10.1186/s12917-014-0308-2
Rubio-Guerri, C., Melero, M., Esperón, F., Bellière, E., Arbelo, M., Crespo, J., Sierra, E., García-Párraga, D., & Sánchez-Vizcaíno, J. (2013). Unusual striped dolphin mass mortality episode related to cetacean morbillivirus in the Spanish Mediterranean sea. BMC Veterinary Research, 9(1), 106. https://doi.org/10.1186/1746-6148-9-106
Hawkins, M. G., Winder, D. M., Ball, S. L. R., Vaughan, K., Sonnex, C., Stanley, M. A., Sterling, J. C., & Goon, P. K. C. (2013). Detection of specific HPV subtypes responsible for the pathogenesis of condylomata acuminata. Virology Journal, 10(1), 137. https://doi.org/10.1186/1743-422X-10-137
Liang, W. S., Craig, D. W., Carpten, J., Borad, M. J., Demeure, M. J., Weiss, G. J., Izatt, T., Sinari, S., Christoforides, A., Aldrich, J., Kurdoglu, A., Barrett, M., Phillips, L., Benson, H., Tembe, W., Braggio, E., Kiefer, J. A., Legendre, C., Posner, R., … Von Hoff, D. (2012). Genome-Wide Characterization of Pancreatic Adenocarcinoma Patients Using Next Generation Sequencing. PLoS ONE, 7(10), e43192. https://doi.org/10.1371/journal.pone.0043192
Kang, H. J., Kawasawa, Y. I., Cheng, F., Zhu, Y., Xu, X., Li, M., Sousa, A. M. M., Pletikos, M., Meyer, K. A., Sedmak, G., Guennel, T., Shin, Y., Johnson, M. B., Krsnik, Ž., Mayer, S., Fertuzinhos, S., Umlauf, S., Lisgo, S. N., Vortmeyer, A., … Šestan, N. (2011). Spatio-temporal transcriptome of the human brain. Nature, 478(7370), 483–489. https://doi.org/10.1038/nature10523
Repnik, K., & Potočnik, U. (2011). Haplotype in the IBD5 region is associated with refractory Crohn’s disease in Slovenian patients and modulates expression of the SLC22A5 gene. Journal of Gastroenterology, 46(9), 1081–1091. https://doi.org/10.1007/s00535-011-0426-6
Foott, J. S., & Fogarty, R. (2011). Juvenile Stanislaus River Chinook salmon pathogen and physiology assessment: January – May 2011. U.S. Fish & Wildlife Service California  – Nevada Fish Health Center,  Anderson, CA. http://www.fws.gov/lodi/afrp/documents/STAN11%20REPORT%207-14%20final.pdf
NIMH Transcriptional Atlas of Human Brain Development. (2010). Transcriptome profiling by RNA sequencing.
Repnik, K., & Potočnik, U. (2010). CTLA4 CT60 Single-Nucleotide Polymorphism Is Associated with Slovenian Inflammatory Bowel Disease Patients and Regulates Expression of CTLA4 Isoforms. DNA and Cell Biology, 29(10), 603–610. https://doi.org/10.1089/dna.2010.1021